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Abstract The formation of well-defined colloidal particles (mesoglobules) from

the thermosensitive polymer poly(methoxydiethyleneglycol methacrylate) was

observed in dilute aqueous solutions (0.5–1.0 g/L) by turbidimetry and dynamic

light scattering (DLS). DLS measurements were performed at 70 �C and showed a

strong influence of polymer molecular weight: the hydrodynamic diameters of the

mesoglobules increased from ca. 160 to 330 nm with a relatively small, i.e., from

6,400 to 14,000, increase in molecular weight. The addition of sodium dodecyl

sulfate (SDS) at surfactant/polymer ratios (s/p, g/g) ranging from 0.3 to 0.5 prac-

tically inhibited the clouding of the solutions as the initial transmittance decreased

by only 10–30%. Furthermore, a dramatic shift of the original cloud point values

taken as a 10% decrease in transmittance, by approximately 20–60 �C was regis-

tered upon the surfactant addition. The presence of SDS resulted in size reduction

by 52–90% as indicated by DLS.
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Introduction

A class of water-soluble thermosensitive polymers exhibits a lower critical solution

temperature (LCST), at which the individual polymer chains undergo a coil-to-

globule transition as a result from dehydration of the chains due to worsening of the

thermodynamic quality of water as a solvent. Thus, the formed polymeric globules

quickly aggregate, ultimately resulting in the appearance of a macroscopic phase

separation. Typical LCST polymers are poly(N-isopropylacrylamide) (PNIPAm),

poly(propylene oxide), polyoxazolines, poly(oligoethyleneglycol (meth)acrylate)s,

and many others [1]. However, conditions can be found, at which well-defined

colloidal globular aggregates of low size dispersity and dimensions ranging from

tens to hundreds of nanometers are formed instead of macrophase separation. These

aggregates, referred to as mesoglobules [2], in particular have been extensively

investigated for development of intelligent applications in nanotechnology and

biotechnology including gene and drug delivery.

The most studied LCST polymer so far is PNIPAm. The reason is not only that

PNIPAm is commercially available and displays an LCST that is close to body

temperature; its LCST has been shown to be slightly sensitive to environmental

conditions such as pH, concentration, chemical environment, etc. For PNIPAm,

below the overlapping polymer concentration, colloidal mesoglobules of spherical

shape are reportedly formed [1, 2]. Moreover, mesoglobules of low size dispersity

and dimensions ranging from 50 to 200 nm can form even at higher polymer

concentrations [3, 4]. The size of mesoglobules could be effectively controlled by

the polymer concentration and the rate of heating of the polymer solution. In

general, smaller aggregates are formed at lower concentrations and/or faster heating

rates [3, 4]. The presence of surfactants has also been reported to decrease the size

of mesoglobules [5].

A promising alternative to PNIPAm are various poly(meth)acrylates possessing

rather short oligo(ethylene glycol) side chains [6–9]. Their LCSTs and, in general,

aqueous solution properties can be tuned by varying the length of the side chains or

by copolymerizing monomers with different numbers of pendant ethylene oxide

units. These (co)polymers typically exhibit a narrower transition than that of

PNIPAm and almost lack of hysteresis during heating–cooling cycles [10] Recently,

we have shown that well-defined mesoglobules from LCST polymers are attractive

as templates for formation of nanoparticles containing cores of different natures,

hollow nanospheres and for preparation of nanocapsules, intended for delivery of

bioactive molecules [11]. The formation of nanotemplates from thermosensitive

polymers is a relatively unexplored field and only examples for PNIPAM and

poly(ethoxytriethylene glycol acrylate)s (PETEGA) exist up to date [10, 12].

In the present contribution, we explore the possibilities for formation of

nanotemplates from another thermosensitive polymer—poly(methoxydiethylene-

glycol methacrylate) (PDEGMA). The latter has an LCST of around 25 �C,

regardless polymer’s molecular weight, i.e., PDEGMA like PNIPAM and PETEGA
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is also type II LCST polymer [10]. The formation of mesoglobules was observed by

turbidimetry and dynamic light scattering (DLS) of aqueous solutions of PDEGMA

in the molecular weight range from 6,400 to 14,000 in the absence or in the presence

of sodium dodecyl sulfate (SDS).

Experimental

Materials

Deionized water was obtained by Millipore MilliQ system. Sodium dodecyl sulfate

(SDS, 98.5%, Aldrich), 1-methoxy-3-(trimethylsilyloxy)-2-methyl-1-propene (MTS,

99.9?%, ABCR, Karlsruhe, Germany), calcium hydride (CaH2, 99.99 %, Aldrich),

activated neutral aluminum oxide (Al2O3, Aldrich), sodium metal (Na, C99%,

Aldrich), and potassium metal (K, C99%, Aldrich) were used as received.

Methoxydiethyleneglycol methacrylate (DEGMA, Aldrich, 99%) was activated

by passing through an aluminum oxide column. After flushing with argon, it was

stored over CaH2 degassed and distilled under high vacuum. The initiator MTS was

degassed by three freeze–pump–thaw cycles prior to use.

Tetrahydrofuran (THF, C99.9%, Adrich) was refluxed over potassium and

distilled in a two-step distillation still. After degassing, the solvent was stirred over

Na/K alloy and distilled in vacuo prior to use.

The catalyst trisdimethylaminosulfonium bifluoride (TAS HF2) was prepared

according to the literature procedure [13].

Polymerization of DEGMA

PDEGMA was synthesized by group transfer polymerization (GTP) under TAS HF2

catalysis at room temperature. Molar masses of the final polymers were controlled

by the monomer to initiator ratio. The polymerization was performed in an Argon-

filled glove box (MBraun, Garching, Germany) at room temperature. Typically,

5 mL (5.1 g, 27.1 mmol) of DEGMA monomer and an appropriate amount of the

initiator MTS (Table 1) were dissolved in 50 mL THF. The polymerization was

started by addition of 5 mL of TAS HF2 solution in THF (concentration 10-4 mol/L).

After 3 h reaction time, the polymerization was terminated with methanol and the

obtained polymer was precipitated in heptane.

Table 1 Molecular weight properties of PDEGMA

# [DEGMA]/[MTS] Mn PDI

PDEGMA-5K 27.65 6,400 1.5

PDEGMA-10K 55.31 11,400 1.4

PDEGMA-15K 79.71 14,000 1.4

Polym. Bull. (2012) 68:2175–2185 2177

123



Preparation of mesoglobules

PDEGMA mesoglobules were formed in situ in deionized water, at temperatures

higher than 25 �C. For DLS measurements, 3 mL aqueous solution of molecularly

dissolved polymer (at temperatures below 25 �C) with appropriate concentration

was added to 6 mL milliQ water at 70 �C.

Methods

Size exclusion chromatography (SEC)

SEC measurements were performed at room temperature in THF using 5 l PSS

SDV gel columns (102, 103, 104, 105 Å, 8 9 300 mm each, PSS GmbH, Mainz,

Germany) at a flow rate of 1.0 mL/min (VWR-Hitachi 2130 pump). A Waters 2410

refractive index detector (k = 930 nm) was used for concentration detection.

Samples were injected employing a Waters 717 autosampler (injection volume

50 lL). To compensate for flow-rate fluctuations, 20 ppm 2,6-di-tert-butyl-

hydroxytoluene (BHT) was added as internal standard to each sample. Raw data

were processed using PSS WinGPC Unity software package. Elugrams are flow-rate

corrected; poly(methyl methacrylate) calibration was used to calculate the apparent

molecular weight distribution and the corresponding averages.

Dynamic light scattering (DLS)

DLS measurements were performed on a Brookhaven BI-200 goniometer with

vertically polarized incident light of wavelength k = 633 nm supplied by a

helium–neon laser operated at 75 mW and a Brookhaven BI-9000 AT digital

autocorrelator. Measurements of scattered light from the polymer aqueous

solutions (c = 0.5 g/L) were made at an angle of 90� to the incident beam at

70 �C. The autocorrelation functions were analyzed by the constrained regularized

CONTIN method to obtain the apparent hydrodynamic diameters, Dh [14]. DLS

measurements were also carried out on a Zetasizer Nano-ZS instrument (Malvern

Instruments), equipped with a He–Ne laser (k = 633 nm) with a scattering angle

of 173�.

Turbidimetry

Cloud points of 0.5 and 1.0 g/L aqueous polymer solutions were determined on a

JASCO V-530 UV–VIS spectrophotometer switched to transmittance regime at

constant wavelength of 500 nm. The cuvette compartment was thermostated by

Medson MTC-P1 thermocontroller with a stability of B0.05 �C. The temperature

range was from 10 to 85 �C and heating/cooling rates were 1 �C/min.
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Results and discussion

Synthesis of PDEGMA polymers

Controlled polymerizations of methoxydiethyleneglycol methacrylate, DEGMA,

and its mono- and trisethyleneglycol analogs have been reported employing an

anionic polymerization route. Ishizone et al. investigated the influence of various

counterions and additives on the molar mass distribution as well as tacticity and

even accomplished the synthesis of a polystyrene-b-PDEGMA block copolymer by

sequential monomer addition technique [15–17, 22]. The similarity of their findings

to an anionic polymerization of tert-butyl methacrylate indicated the possibility, that

DEGMA could be polymerized using a group transfer mechanism (GTP) [18–20]

which circumvents the necessity to work at low temperatures. Despite the

polymerization of tert-butyl methacrylate (tBMA) via anionic polymerization is a

straightforward process; reports on the synthesis of PtBMA via GTP are scarce.

Doherty and Müller [21] reported that the GTP of tBMA could only be

accomplished, if the trisdimethylaminosulfonium bifluoride (TAS HF2) catalyst is

repeatedly added during the reaction. Based on their results, DEGMA was

polymerized in the presence of the same catalyst; however, TAS HF2 was solely

added to initiate the polymerization.

The results of the polymerization are compiled in Table 1. Molecular weights can

be controlled by variation of the monomer to initiator ratio; the polydispersity

indices in the range of 1.5 indicate some deviations from an idealized GTP process.

Turbidity measurements

PDEGMA is a low Tg (-40 �C)[22] thermosensitive polymer with a hydrophobic

aliphatic backbone surrounded by hydrophilic diethylene glycol pendant chains

(Scheme 1). The sigmoidal turbidity curves of PDEGMA in water in the absence of

SDS were abrupt with a decrease of transmittance window of approx. 5 �C (Fig. 1a,

c). The heating and cooling curves were very close and almost overlapped in a similar

fashion as in the aqueous solutions of PETEGA at similar experimental conditions

[10]. The cloud point (CP) values of aqueous PDEGMA solutions with or without

added surfactant (SDS) were determined as the point at which the transmittance

decreased by 10%. They are collected in Table 2. As seen from Table 2, the CPs were

not significantly influenced by concentration or molecular weight variations of the

polymers, which confirmed that PDEGMA is a type II LCST polymer. The CP value

Scheme 1 Structure formula
of PDEGMA
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of PDEGMA-15K agreed very well with values already reported in the literature

(Table 2), whereas a difference as high as 8 �C was observed for PDEGMA-5K when

compared to PDEGMA of Mn = 6,000 and PDI = 1.3 [22]. CP values from the

literature are for higher molecular weights of Mn = 37,000, PDI = 1.08 and

Mn = 31,000, PDI = 1.48 are 26 and 25 �C, respectively [22, 23].

Table 2 Cloud points of PDEGMA aqueous solutions

No. Sample # Concentration

(g/L)

Surfactant/

polymer (s/p) (g/g)

CP (�C) Reported

CP (�C)

1. PDEGMA-5K 1.0 0.0 29 21 [24]

2. PDEGMA-10K 1.0 0.0 26 –

3. PDEGMA-15K 1.0 0.0 26 27 [22]

4. PDEGMA-15K 1.0 0.5 85a –

5. PDEGMA-15K 0.5 0.0 26 –

6. PDEGMA-15K 0.5 0.5 45b –

a Solutions were not completely cloudy, transmittance decreased to 90%
b Solutions were not completely cloudy, transmittance decreased to 70%

0 20 40 60 80 100

0

20

40

60

80

100(a)

(c)

PDEGMA-15K
1 g.L-1

Temperature (oC) Temperature (oC)

Temperature (oC) Temperature (oC)

T
ra

ns
m

itt
an

ce
 (

%
)

0 20 40 60 80 100

0

20

40

60

80

100

PDEGMA-15K
1 g.L-1

s/p = 0.5

(b)

(d)

T
ra

ns
m

itt
an

ce
 (

%
)

0 20 40 60 80 100

0

20

40

60

80

100
PDEGMA-15K
0.5 g.L-1

T
ra

ns
m

itt
an

ce
 (

%
)

0 20 40 60 80 100

0

20

40

60

80

100

PDEGMA-15K
0.5 g.L-1

s/p = 0.5

T
ra

ns
m

itt
an

ce
 (

%
)

Fig. 1 Turbidity curves for a PDEGMA-15K, 1 g/L, b PDEGMA-15K, 1 g/L in the presence of SDS,
s/p = 0.5 (g/g), c PDEGMA-15K, 0.5 g/L, d PDEGMA-15K, 0.5 g/L in the presence of SDS, s/p = 0.5
(g/g). Filled triangles are data points for heating cycle, hollow triangles are data points for cooling
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The addition of SDS to aqueous solutions of PNIPAm [11] and PETEGA [10, 12]

has been shown to shift the original clouding curves to higher temperatures; the

initially transparent solutions eventually turned into milky white dispersions with

practically zero transmittance. In contrast, the addition of the same surfactant at the

same quantities (hereinafter expressed as a surfactant-to-polymer, s/p, w/w ratio) to

aqueous solution of PDEGMA did not result in appearance of strong opalescence

upon increasing temperature (Fig. 1b, d). Instead, formation of stable colloidal

aggregates of presumably sub-micron dimensions up to temperatures as high as

85–90 �C was observed. For example, the transmittance versus temperature curve

for PDEGMA-15K at c = 1 g/L and s/p = 0.5 started to decrease at about 65 �C

and up to the upper temperature limit of our experiments (85 �C) only a 10%

decrease in transmittance was registered (Fig. 1b). This temperature was taken as a

CP (Table 1). At the same s/p ratio but lower polymer concentration and,

consequently, lower overall SDS content, the onset of transmittance decrease was

shifted to lower temperatures—42 versus 65 �C—and more pronounced decrease in

transmittance—90 versus 70%—was observed (Fig. 1b, d). CP of 45 �C was

determined for that sample (Table 2). The difference between the two experiments

is most likely due to the lower overall concentration of SDS, which solubilizes the

PDEGMA chains and prevents them from collapsing with each other. The lack of

hysteresis during the heating–cooling cycles regardless on the presence of SDS is

noteworthy as well. The peculiar behavior in the presence of SDS, in particular, the

substantial increase of CPs and insignificant to slight decrease in transmittance is so

far unique for PDEGMA and, to the best of our knowledge, has not been reported

elsewhere neither for the investigated concentration region nor for other LCST

polymers.

Dynamic light scattering (DLS)

The DLS measurements of the aqueous dispersions were done at 70 �C, since at this

temperature the formation of a thin cross-linked shell on the surface of

nanotemplates based on thermosensitive or ionic (co)polymers is typically

performed [12]. The polymer concentration was fixed at 0.5 g/L. The presence of

a surfactant, in particular SDS, has been very important in controlling the size of the

nanotemplates or mesoglobules in general aspect. Therefore, two s/p ratios—0.3 and

0.5—corresponding to overall SDS concentrations of 0.15 and 0.25 g/L, respec-

tively, were explored. Figure 2 shows size distribution of PDEGMA mesoglobules

obtained from the three polymers via abrupt heating of presumably molecular

solutions (see ‘‘Experimental’’ section). The distributions were invariably mono-

modal and relatively narrow (\0.1), corresponding to average hydrodynamic

diameters (Dh) of mesoglobules of 163, 185, and 329 nm for PDEGMA-5K,

PDEGMA-10K, and PDEGMA-15K, respectively (Table 3). Similar to other

systems [2–4, 10–12], the Dhs of PDEGMA mesoglobules were found to increase

with increasing molecular weight of the polymers. While for PETEGA polymers,

for example, the effect of molecular weight within the range from 7,000 to 40,000

was not obvious [10], the striking result for PDEGMA is the substantial increase in

dimensions within considerable narrower molecular weight interval. We can assume
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that the more hydrophobic nature of PDEGMA compared to PETEGA (2 vs 3 EO

units in the side chains and polymethacrylic versus polyacrylic backbone) is behind

the well documented more pronounced molecular weight dependence of mesoglo-

bule dimensions.

The added SDS had a dramatic effect on the mesoglobules dimensions as well.

For all PDEGMA polymers at the two s/p ratios studied (0.3 and 0.5 at polymer

concentration of 0.5 g/L) the particle size distributions remained monomodal, as

exemplified in Fig. 3 for PDEGMA-15K at s/p 0.5, which indicated the existence of

only one population of particles implying that all SDS molecules are effectively
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Fig. 2 Typical DLS diameter
distributions of mesoglobules
obtained from a PDEGMA-5K,
b PDEGMA-10K, and
c PDEGMA-15K. Polymer
concentration c = 0.5 g/L,
temperature of preparation and
measurements 70 �C
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bound to the mesoglobules. Since the overall SDS content is below the critical

micellization concentration, we can presume unimer binding, rather than micellar

binding, of SDS to hydrophobic sites of PDEGMA macromolecules and collective

formation of mesoglobules, which resemble a polyelectrolyte type polymer–

surfactant complex. In these particles, the repulsive intra-particle electrostatic

interactions between SDS molecules become dominant and increasingly pronounced

with increasing SDS content, respectively, s/p ratio, so that the system would relax

with formation of more curved, respectively, smaller in size, structures. Indeed, as

evidenced by Table 3, a substantial (52–90%) particle size reduction was observed.

The formation of considerably smaller mesoglobules in the presence of SDS is in

line with the turbidimetric curves showing only slight decrease in transmittance at

elevated temperatures.

Conclusions

The thermal behavior of well-defined PDEGMA homopolymers of molecular

weight ranging from 6,400 to 14,000 was investigated in dilute aqueous solutions.

The polymers exhibit LCST properties with sharp and reversible transitions within a

narrow temperature window and lack of hysteresis. They are molecularly dissolved

Table 3 Hydrodynamic diameters of mesoglobules prepared from PDEGMA polymers of different

molecular weights and at SDS-to-polymer (s/p) ratios of 0.3 and 0.5

# Dh (nm) Dh (nm) s/p = 0.3a Dh (nm) s/p = 0.5a

PDEGMA-5K 163 78 (52) 22 (86)

PDEGMA-10K 185 82 (56) 24 (87)

PDEGMA-15K 329 100 (70) 32 (90)

Polymer concentration c = 0.5 g/L, temperature of preparation and measurements 70 �C
a Size reduction in % is given in parenthesis
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Fig. 3 Size distribution of
mesoglobules obtained from
PDEGMA-15K in the presence
of SDS at s/p ratio of 0.5.
Polymer concentration
c = 0.5 g/L, temperature of
preparation and measurements
70 �C
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below the transition and form stable nanosized mesoglobules above it. The cloud

point values (26–29 �C) were insensitive to molecular weight variations in contrast

to mesoglobule dimensions, which were found to strongly increase with increasing

molecular weight. The addition of small quantities of anionic surfactant (sodium

dodecyl sulfate, SDS) did not compromise the (lack of) hysteresis in the heating–

cooling cycles but had a strong effect on the (i) CP values which were found to shift

to higher temperatures by tens of degrees; (ii) macroscopic phase separation which

was completely inhibited as the transmittance of the dispersions showed only a

slight decrease; and (iii) mesoglobule dimensions which displayed reduction up to

90%. To the best of our knowledge, such strong influence of polymer molecular

weight and surfactant addition has not been reported for other LCST polymers.
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